ESFORÇO FÍSICO E RESTRIÇÃO DE SONO MODIFICAM MARCADORES BIOQUÍMICOS E COGNITIVOS EM MILITARES: UMA REVISÃO SISTEMÁTICA
##plugins.themes.bootstrap3.article.main##
Resumo
A revisão objetivou descrever os efeitos de treinamentos militares que combinam atividade física intensa e privação de sono em marcadores de estresse oxidativo, lesão celular, desempenho físico e cognitivo. Foi realizada uma revisão sistemática seguindo as recomendações do PRISMA e a pesquisa foi realizada nas bases de dados Pubmed e Google Scholar. A frase de busca foi desenvolvida para identificar estudos experimentais que investigaram momentos pré e pós treinamentos militares, avaliando pelo menos uma das variáveis dependentes: dano oxidativo, capacidade antioxidante, lesão celular, alerta cognitivo e desempenho físico. Vinte e quatro estudos preencheram os critérios de inclusão. As intervenções dos estudos incluídos variaram de 1 a 63 dias, com predominância de atividade física intensa e importante privação de sono. As comparações dos dados pareados convergiram com o aumento dos níveis de lesão celular, queda dos desempenhos físico e cognitivo (p<0,05). Houve escassez das avaliações de estresse oxidativo e distinção entre os protocolos dos estudos encontrados. A revisão concluiu que a combinação de atividade física intensa e privação de sono são capazes de provocar aumento nos níveis de lesão celular e queda de performance física e cognitiva. Sugere também que há uma lacuna de informações sobre estresse oxidativo e treinamentos militares.
Downloads
##plugins.themes.bootstrap3.article.details##
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição 4.0.
Referências
Brancaccio, P., Maffulli, N., & Limongelli, F. M. (2007). Creatine kinase monitoring in sport medicine. British medical bulletin, 81-82, 209–230. https://doi.org/10.1093/bmb/ldm014
Coutinho LAA, Cerqueira LS, Rodrigues AVS, Porto CPM, Pierucci APTR. (2014). Co-ingestion of carbohydrate and pea protein does not enhance muscle recovery after strenuous exercise. Revista de Nutrição. FapUNIFESP; Jun;27(3):367–77. http://dx.doi.org/10.1590/1415-52732014000300010.
Christensen, P. A., Jacobsen, O., Thorlund, J. B., Madsen, T., Møller, C., Jensen, C., Suetta, C., & Aagaard, P. (2008). Changes in maximum muscle strength and rapid muscle force characteristics after long-term special support and reconnaissance missions: a preliminary report. Military medicine, 173(9), 889–894. https://doi.org/10.7205/milmed.173.9.889
Delgado-Moreno, R., Robles-Pérez, J. J., Aznar, S., & Clemente-Suarez, V. J. (2018). Inalambric Biofeedback Devices to Analyze Strength Manifestation in Military Population. Journal of medical systems, 42(4),60 https://doi.org/10.1007/s10916-018-0914-9
Domingues CA, Domingues ECP, Nascimento OJ, Filho NGR, Annunziato JT, Rebelo JLC, et al. (2015). Prolonged Physical Effort Affects Cognitive Processes During Special Forces Training. Springer International Publishing; 570–82. http://dx.doi.org/10.1007/978-3-319-20816-9_55.
Fortes, M. B., Diment, B. C., Greeves, J. P., Casey, A., Izard, R., & Walsh, N. P. (2011). Effects of a daily mixed nutritional supplement on physical performance, body composition, and circulating anabolic hormones during 8 weeks of arduous military training. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 36(6), 967–975. https://doi.org/10.1139/h11-124
Gomez-Cabrera, M. C., Domenech, E., & Viña, J. (2008). Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free radical biology & medicine, 44(2), 126–131. https://doi.org/10.1016/j.freeradbiomed.2007.02.001
Gorgulu, Y., & Caliyurt, O. (2009). Rapid antidepressant effects of sleep deprivation therapy correlates with serum BDNF changes in major depression. Brain research bulletin, 80(3), 158–162. https://doi.org/10.1016/j.brainresbull.2009.06.016
Hamarsland, H., Paulsen, G., Solberg, P. A., Slaathaug, O. G., & Raastad, T. (2018). Depressed Physical Performance Outlasts Hormonal Disturbances after Military Training. Medicine and science in sports and exercise, 50(10),2076–2084. https://doi.org/10.1249/MSS.0000000000001681
Hammouda, O., Chtourou, H., Chaouachi, A., Chahed, H., Ferchichi, S., Kallel, C., Chamari, K., & Souissi, N. (2012). Effect of short-term maximal exercise on biochemical markers of muscle damage, total antioxidant status, and homocysteine levels in football players. Asian journal of sports medicine, 3(4), 239–246. https://doi.org/10.5812/asjsm.34544
Higgins JP, Altman DG. Assessing Risk of Bias in Included Studies. Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons, Ltd; 187–241. http://dx.doi.org/10.1002/9780470712184.ch8.
Huang, T., Larsen, K. T., Ried-Larsen, M., Møller, N. C., & Andersen, L. B. (2014). The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scandinavian journal of medicine & science in sports, 24(1), 1–10. https://doi.org/10.1111/sms.12069
Kenney, K., Landau, M. E., Gonzalez, R. S., Hundertmark, J., O'Brien, K., & Campbell, W. W. (2012). Serum creatine kinase after exercise: drawing the line between physiological response and exertional rhabdomyolysis. Muscle & nerve, 45(3), 356–362. https://doi.org/10.1002/mus.22317
Koury, J. C., Daleprane, J. B., Pitaluga-Filho, M. V., de Oliveira, C. F., Gonçalves, M. C., & Passos, M. C. (2016). Aerobic Conditioning Might Protect Against Liver and Muscle Injury Caused by Short-Term Military Training. Journal of strength and conditioning research, 30(2), 454–460. https://doi.org/10.1519/JSC.0000000000001102
Legg, S. J., & Patton, J. F. (1987). Effects of sustained manual work and partial sleep deprivation on muscular strength and endurance. European journal of applied physiology and occupational physiology, 56(1), 64–68. https://doi.org/10.1007/BF00696378
Lieberman, H.R.; Caruso, C.M.; Niro, P.J.; Bathalon, G.P. (2006). Acute Effects of Battlefield-Like Stress on Cognitive and Endocrine Function of Officers from an Elite Army Unit. In Human Dimensions in Military Operations—Military Leaders’ Strategies for Addressing Stress and Psychological Support. (pp. 33-1–33-14). Meeting Proceedings RTO-MP-HFM-134, Paper 33. Neuilly-sur-Seine, France: RTO. http://www.rto.nato.int/abstracts.asp
Lieberman, H. R., Castellani, J. W., & Young, A. J. (2009). Cognitive function and mood during acute cold stress after extended military training and recovery. Aviation, space, and environmental medicine, 80(7), 629–636. https://doi.org/10.3357/asem.2431.2009
Lieberman, H. R., Farina, E. K., Caldwell, J., Williams, K. W., Thompson, L. A., Niro, P. J., Grohmann, K. A., & McClung, J. P. (2016). Cognitive function, stress hormones, heart rate and nutritional status during simulated captivity in military survival training. Physiology & behavior, 165, 86–97. https://doi.org/10.1016/j.physbeh.2016.06.037
Margolis, L. M., Murphy, N. E., Martini, S., Spitz, M. G., Thrane, I., McGraw, S. M., Blatny, J. M., Castellani, J. W., Rood, J. C., Young, A. J., Montain, S. J., Gundersen, Y., & Pasiakos, S. M. (2014). Effects of winter military training on energy balance, whole-body protein balance, muscle damage, soreness, and physical performance. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 39(12), 1395–1401. https://doi.org/10.1139/apnm-2014-0212
Nindl, B. C., Leone, C. D., Tharion, W. J., Johnson, R. F., Castellani, J. W., Patton, J. F., & Montain, S. J. (2002). Physical performance responses during 72 h of military operational stress. Medicine and science in sports and exercise, 34(11), 1814–1822. https://doi.org/10.1097/00005768-200211000-00019
Nindl, B. C., Barnes, B. R., Alemany, J. A., Frykman, P. N., Shippee, R. L., & Friedl, K. E. (2007). Physiological consequences of U.S. Army Ranger training. Medicine and science in sports and exercise, 39(8), 1380–1387. https://doi.org/10.1249/MSS.0b013e318067e2f7
Santos NC de MS, Neves EB, Fortes M de SR, Martinez EC, Júnior O da CF. (2018) The influence of combat simulation exercises on indirect markers of muscle damage in soldiers of the brazilian army. Bioscience Journal; 1051–61. http://dx.doi.org/10.14393/bj-v34n1a2018-39467.
Silva, FB. (2019) Marcadores indiretos de lesão celular, de estresse oxidativo e hormonais em exercícios de alta intensidade e longa duração, com restrição alimentar e de sono: uma revisão sistemática. Trabalho de Conclusão de Curso (Graduação em Educação Física). Escola de Educação Física do Exército. Rio de Janeiro — RJ.
Supplemental Information 5: PRISMA 2009 Checklist—Preferred reporting items for systematic reviews and meta-analyses. PeerJ; http://dx.doi.org/10.7717/peerj.4598/supp-5
Suzuki, G., Tokuno, S., Nibuya, M., Ishida, T., Yamamoto, T., Mukai, Y., Mitani, K., Tsumatori, G., Scott, D., & Shimizu, K. (2014). Decreased plasma brain-derived neurotrophic factor and vascular endothelial growth factor concentrations during military training. PloS one, 9(2), e89455. https://doi.org/10.1371/journal.pone.0089455
Tanskanen, M. M., Uusitalo, A. L., Kinnunen, H., Häkkinen, K., Kyröläinen, H., & Atalay, M. (2011). Association of military training with oxidative stress and overreaching. Medicine and science in sports and exercise, 43(8), 1552–1560. https://doi.org/10.1249/MSS.0b013e3182106d81
Tanskanen, M. M., Westerterp, K. R., Uusitalo, A. L., Atalay, M., Häkkinen, K., Kinnunen, H. O., & Kyröläinen, H. (2012). Effects of easy-to-use protein-rich energy bar on energy balance, physical activity and performance during 8 days of sustained physical exertion. PloS one, 7(10), e47771. https://doi.org/10.1371/journal.pone.0047771
Tomczak, A., Dąbrowski, J., & Mikulski, T. (2017). Psychomotor performance of Polish Air Force cadets after 36 hours of survival training. Annals of agricultural and environmental medicine : AAEM, 24(3), 387–391. https://doi.org/10.5604/12321966.1232762
Tomczak, A. (2013) Effects of a 3-day survival training on selected coordination motor skills of special unit soldiers. Arch Budo. 9(3):169–173.
Tomczak A. (2015). Coordination Motor Skills of Military Pilots Subjected to Survival Training. Journal of strength and conditioning research, 29(9), 2460–2464. https://doi.org/10.1519/JSC.0000000000000910
Tomczak, A., Różański, P., & Jówko, E. (2019). Changes in Coordination Motor Abilities of Naval Academy Cadets During Military Survival Training. Aerospace medicine and human performance, 90(7), 632–636. https://doi.org/10.3357/AMHP.5302.2019
Varanoske, A. N., Wells, A. J., Kozlowski, G. J., Gepner, Y., Frosti, C. L., Boffey, D., Coker, N. A., Harat, I., & Hoffman, J. R. (2018). Effects of β-alanine supplementation on physical performance, cognition, endocrine function, and inflammation during a 24 h simulated military operation. Physiological reports, 6(24), e13938. https://doi.org/10.14814/phy2.13938
Welsh, T. T., Alemany, J. A., Montain, S. J., Frykman, P. N., Tuckow, A. P., Young, A. J., & Nindl, B. C. (2008). Effects of intensified military field training on jumping performance. International journal of sports medicine, 29(1), 45–52. https://doi.org/10.1055/s-2007-964970
Zoladz, J. A., Pilc, A., Majerczak, J., Grandys, M., Zapart-Bukowska, J., & Duda, K. (2008). Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society, 59 Suppl 7, 119–132.