Governance For Credit Score Definition: Social Participation As An Instrument Of System Adequacy
Main Article Content
Abstract
The adoption of artificial intelligence systems to define the credit risk score has become an increasingly common situation. However, the adoption of such systems recommends the system to be suitable for the society where it will be used. In this way, the research reflects the importance of adopting multidisciplinary teams for the construction of artificial intelligence systems for credit analysis in order to provide such adequacy. The research problem refers to whether the adoption of professionals from diversified areas for the proper implementation of the artificial intelligence system for credit analysis, with a view to incorporating particularities of the local economy, will allow for a better adjustment of the risk assumed in each operation. The investigation to answer the problem focused on situations where risk analysis failed to capture particularities of local markets, generating inadequacy in risk analysis and exposing the financial institution to unwanted situations. As a conclusion of the research, it was observed that the implementation of artificial intelligence systems for credit analysis exposes the financial institution to new risks, deserving such situation an appropriate governance structure endowed with instruments that allow the adaptation of the model to the society that seeks to define the risk.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Barocas, S. & Selbst, A. (2016). Big Data’s Disparate Impact. California Law Review, 2016. Recuperado de https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2477899.
Banco Central do Brasil. (2018). O brasileiro e sua relação com o dinheiro. Banco Central do Brasil. Recuperado de https://www.bcb.gov.br/content/cedulasemoedas/pesquisabrasileirodinheiro/Apresentacao_brasileiro_relacao_dinheiro_2018.pdf.
BCBS. (2004). Basel II: International Convergence of Capital Measurement and Capital Standards: a Revised Framework. Basel Committee on Banking Supervision. Basiléia. Recuperado de https://www.bis.org/publ/bcbs107.htm.
Berquó, A. (2013). O crédito na sociedade de consumo. (Tese de Doutorado). Programa de Pós-Graduação em Sociologia da Universidade Federal da Paraiba.
Comissão Europeia. (2019). Excelência e confiança na inteligência artificial. Recuperado de https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/excellence-trust-artificial-intelligence_pt#benefcios-da-inteligncia-artificial.
Entsminger, J., Esposito, M., Tse, T. & Goh, D. (2018). What Governments need to understand about ethical AI. The European Business Review September. Recuperado de https://www.europeanbusinessreview.com/what-governments-need-to-understand-about-ethical-ai/
Ferguson, N. (2009). A ascensão do dinheiro: a história financeira do mundo; tradução Cordelia Magalhães. São Paulo: Editora Planeta do Brasil.
Future of Life Institute. (2020). What makes people happy? Recuperado de https://www.youtube.com/watch?v=z1N96In7GUc.
Financial Stability Board. (2017). Artificial intelligence and machine learning in financial services - Market developments and financial stability implications. Recuperado de https://www.fsb.org/2017/11/artificial-intelligence-and-machine-learning-in-financial-service/.
Harreis, H. (2017). The future of risk management in the digital era. Mckynsey & Company, 2017. Recuperado de https://www.mckinsey.com/business-functions/risk/our-insights/the-future-of-risk-management-in-the-digital-era.
Lidén, M. (2018). Confirmation Bias in Criminal Cases. [Doctoral Thesis]. Uppsala University, SE-75120 Uppsala, Sweden. Recuperado de http://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A1237959&dswid=686.
Meireles, R. (2018). Um em cada três brasileiros não tem conta em banco, mostra pesquisa Locomotiva. Recuperado de https://www.ilocomotiva.com.br/single-post/2019/09/24/um-em-cada-tr%C3%AAs-brasileiros-n%C3%A3o-tem-conta-em-banco-mostra-pesquisa-locomotiva.
Nunes, D. & Marques, A. (2018). Inteligência Artificial e Direito Processual: vieses algorítmicos e os riscos de atribuição de função decisória às máquinas. Revista dos Tribunais online. Revista de Processo, vol. 285, 421–447.
O’neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. New York: Crow.
Pager, D. & Shepherd, H. (2008). The Sociology of Discrimination: Racial Discrimination in Employment, Housing, Credit, and Consumer Markets. Annual Review of Sociology. Princeton University Library. New Jersey. Recuperado de 10.1146/annurev.soc.33.040406.131740.
Parlamento Europeu. (2017). Resolução do Parlamento Europeu, de 16 de fevereiro de 2017, que contém recomendações à Comissão sobre disposições de Direito Civil sobre Robótica (2015/2103(INL)). Princípios éticos. Recuperado de https://www.europarl.europa.eu/doceo/document/TA-8-2017-0051_PT.html#title1.
Pasquale, F. (2015). The black box society: The Secret Algorithms That Control Money and Information Harvad University Press, 2015.
Ross, S. & Yinger, J. (2002). The Color of Credit: Mortgage Discrimination, Research Methodology, and Fair-lending Enforcement. Cambridge. The MIT Press.
Santos, V. (2020). Gestão De Risco De Crédito Bancário - Caso Do Banco Comercial E De Investimentos (BCI, S. A). [Master Thesis]. Instituto Universitário de Lisboa. Recuperado de https://repositorio.iscte-iul.pt/handle/10071/22452.
Saunders, A. (2008). Financial Institutions management: a risk management approach. 6ª Ed. McGraw-Hill/Irwin, 2008. Recuperado de http://www.bulentsenver.com/FIN5477/Financial_Institutions_Management_AntonySaunders_TextBook.pdf.
Sayuri, J. (2021). O que é o G10 Bank. E qual é seu papel na pandemia. Nexo Jornal, 2021. Recuperado de https://www.nexojornal.com.br/expresso/2021/02/05/O-que-%C3%A9-o-G10-Bank.-E-qual-%C3%A9-seu-papel-na-pandemia.
The Nielsen Company. (2016). Estudo Global: Comércio Conectado. Recuperado de https://www.nielsen.com/br/pt/insights/report/2016/estudo-global-comercio-conectado-2/#.
Turner, M. (2006). Give Credit Where Credit Is Due: Increasing Access to Affordable Mainstream Credit Using Alternative Data. Political and Economic Research Council and The Brookings Institution Urban Markets Initiative. Recuperado de https://www.perc.net/wp-content/uploads/2013/09/alt_data.pdf