PROPOSAL OF A DIGITAL MODEL FOR MEDICATION RECONCILIATION USING BLOCKCHAIN AND ARTIFICIAL INTELLIGENCE
Main Article Content
Abstract
The Electronic Health Record (EHR) is the result of a transformation in the current healthcare system, influenced by innovation, integration, and sharing of clinical data. The EHR should include a clinical summary of patients, electronic prescriptions, electronic medication dispensing records, laboratory results, medical images and/or reports, and hospital discharge notes. Prescription errors and therapeutic administration are among the most common avoidable errors in healthcare, ranking as the sixth leading cause of death in the United States and a priority for the World Health Organization since the launch of the “Medication Without Harm” initiative. The objectives of this study are: i) to present a digital therapeutic reconciliation model; ii) to propose an interoperable and legally compliant solution; iii) to integrate Blockchain and Artificial Intelligence technologies into the presented model. Through a descriptive and exploratory literature review, the use of HL7 FHIR and SNOMED-CT standards, a client-CA model for Blockchain, and machine learning and natural language processing models for Artificial Intelligence were proposed. Ensuring the interoperable and secure transmission of clinical data is complex but theoretically feasible. The advantages of therapeutic reconciliation will be measurable through the continuous reduction of morbidity and mortality associated with therapeutic errors.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Alharbi, F., Atkins, A., & Stanier, C. (2017). Holistic strategic assessment and evaluation of cloud computing adoption: Insights from Saudi Healthcare Organisations. 2017 Internet Technologies and Applications, ITA 2017—Proceedings of the 7th International Conference, 75–80. https://doi.org/10.1109/ITECHA.2017.8101914
Alluhaidan, A. S. (2022). Secure Medical Data Model Using Integrated Transformed Paillier and KLEIN Algorithm Encryption Technique with Elephant Herd Optimization for Healthcare Applications. Journal of Healthcare Engineering, 2022. https://doi.org/10.1155/2022/3991295
Amanat, A., Rizwan, M., Maple, C., Zikria, Y. Bin, Almadhor, A. S., & Kim, S. W. (2022). Blockchain and cloud computing-based secure electronic healthcare records storage and sharing. Frontiers in Public Health, 10. https://doi.org/10.3389/FPUBH.2022.938707
Amazon. (2023). Solutions for Databases | AWS Solutions Library | AWS. https://aws.amazon.com/pt/solutions/databases/
Bamiah, M., Brohi, S., Chuprat, S., & Ab Manan, J. L. (2012). A study on significance of adopting cloud computing paradigm in healthcare sector. Proceedings of 2012 International Conference on Cloud Computing Technologies, Applications and Management, ICCCTAM 2012, 65–68. https://doi.org/10.1109/ICCCTAM.2012.6488073
Barnsteiner, J. H. (2008). Medication Reconciliation. Agency for Healthcare Research and Quality, AHRQ, 08, 1–1403. https://www.ncbi.nlm.nih.gov/books/NBK2648/
Bincoletto, G. (2019). A Data Protection by Design Model for Privacy Management in Electronic Health Records. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11498 LNCS, 161–181. https://doi.org/10.1007/978-3-030-21752-5_11
Bologna, S., Bellavista, A., Corsob, P. P., & Zangarab, G. (2016). Electronic Health Record in Italy and Personal Data Protection. European Journal of Health Law, 265–277. http://ec.europa.eu/information_society/digital-
Chatterjee, A., Pahari, N., & Prinz, A. (2022). HL7 FHIR with SNOMED-CT to Achieve Semantic and Structural Interoperability in Personal Health Data: A Proof-of-Concept Study. Sensors, 22(10). https://doi.org/10.3390/s22103756
Chukwu, E., & Garg, L. (2020). A Systematic Review of Blockchain in Healthcare: Frameworks, Prototypes, and Implementations. IEEE Access, 8, 21196–21214. https://doi.org/10.1109/ACCESS.2020.2969881
Comissão Europeia. (2019). Recomendação (UE) 2019/243 da comissão europeia. https://eur-lex.europa.eu/legal-content/PT/TXT/HTML/?uri=CELEX:32019H0243&from=EN
Comissão Europeia. (2022a). Annexes to the Regulation of the European Parliament and of the Council on the European Health Data Space. https://data.consilium.europa.eu/doc/document/ST-8751-2022-ADD-1/en/pdf
Comissão Europeia. (2022b). Proposta de Regulamento do Parlamento Europeu e do Conselho relativo ao Espaço Europeu de Dados de Saúde. https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/european-data-strategy_pt.
Comissão Europeia. (2023). Interoperability layers. https://joinup.ec.europa.eu/collection/nifo-national-interoperability-framework-observatory/3-interoperability-layers
Data Standardization – OHDSI. (2023). https://www.ohdsi.org/data-standardization/
Edenlab. (2023). TURNKEY FHIR SERVER SOLUTION FOR YOUR HEALTHCARE DATA—KODJIN. https://kodjin.com/kodjin-fhir-server/
Ekblaw, A., & Azaria, A. (2019). MedRec: Medical Data Management on the Blockchain. Viral Communications, 1–11. https://viral.media.mit.edu/pub/medrec
Especificação da LIGHt | SPMS. (2023). https://id.atlassian.com/login?continue=https%3A%2F%2Fid.atlassian.com%2Fjoin%2Fuser-access%3Fresource%3Dari%253Acloud%253Aconfluence%253A%253Asite%252Ffd71cbf4-4dd3-4d07-9085-be2a776863bc%26continue%3Dhttps%253A%252F%252Fspmspt.atlassian.net%252Fwiki%252
Firely. (2023). Reliable and easy FHIR Server for Health Organizations. https://fire.ly/products/firely-server/
Foundation Markle. (2003). The personal health working group final report 2003. In Connecting for Health. http://research.policyarchive.org/15473.pdf
Gil, A. (2017). Como Elaborar Projetos de pesquisa (6th ed.). Atlas.
Haleem, A., Javaid, M., Singh, R. P., Suman, R., & Rab, S. (2021). Blockchain technology applications in healthcare: An overview. International Journal of Intelligent Networks, 2(May), 130–139. https://doi.org/10.1016/j.ijin.2021.09.005
Hameed, R. T., Mohamad, O. A., Hamid, O. T., & Tapus, N. (2016). Design of e-Healthcare management system based on cloud and service oriented architecture. 2015 E-Health and Bioengineering Conference, EHB 2015, 1–4. https://doi.org/10.1109/EHB.2015.7391393
Hassan, J., Shehzad, D., Habib, U., Aftab, M. U., Ahmad, M., Kuleev, R., & Mazzara, M. (2022). The Rise of Cloud Computing: Data Protection, Privacy, and Open Research Challenges—A Systematic Literature Review (SLR). Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/8303504
Home | SNOMED International. (2023). https://www.snomed.org/?lang=pt
ICD—ICD-10—International Classification of Diseases, Tenth Revision. (2023). https://www.cdc.gov/nchs/icd/icd10.htm
Interoperabilidade Técnica: LIGHt; PNB; NCP – SPMS. (2023). https://www.spms.min-saude.pt/2017/06/interoperabilidade-tecnica-light-pnb-ncp/
Jornal Oficial da União Europeia. (2016). Conteúdo UE Regulamento Geral sobre a Proteção de Dados. Privacy/Privazy according to plan. https://www.privacy-regulation.eu/pt/index.htm
Karnon, J., Campbell, F., & Czoski-Murray, C. (2009). Model-based cost-effectiveness analysis of interventions aimed at preventing medication error at hospital admission (medicines reconciliation). Journal of Evaluation in Clinical Practice, 15(2), 299–306. https://doi.org/10.1111/j.1365-2753.2008.01000.x
Koski, E., & Murphy, J. (2021). AI in Healthcare. Studies in Health Technology and Informatics, 284, 295–299. https://doi.org/10.3233/SHTI210726
Kuo, M. H., Kushniruk, A., & Borycki, E. (2011). Can cloud computing benefit health services?-A SWOT analysis. Studies in Health Technology and Informatics, 169, 379–383. https://doi.org/10.3233/978-1-60750-806-9-379
Kuo, T.-T., & Ohno-Machado, L. (2018). ModelChain: Decentralized Privacy-Preserving Healthcare Predictive Modeling Framework on Private Blockchain Networks. ArXiv. https://doi.org/https://doi.org/10.48550/arXiv.1802.01746
LOINC and Health Data Standards—Regenstrief Institute. (2023). https://www.regenstrief.org/centers/loinc/
Marconi, M., & Lakatos, E. (2017). Fundamentos de metodologia científica (8th ed.). Atlas.
McCarthy, J. (2007). What Is Artificial Intelligence? In Stanford University.
Mena, R., & Aguiar, P. (2016). Health Care Marketing (1st ed.). Leya, S.A.
Microsoft. (2023). Azure Health Data Services—FHIR, DICOM & MedTech | Microsoft Azure. https://azure.microsoft.com/en-us/products/health-data-services/
Mosaico | Interoperabilidade. (2023). https://mosaico.gov.pt/areas-tecnicas/interoperabilidade
Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. www.bitcoin.org
Neştian, A. Ștefan, Tiţă, S., & Guţă, A. L. (2020). Incorporating artificial intelligence in knowledge creation processes in organizations. Proceedings of the International Conference on Business Excellence, 14(1), 597–606. https://doi.org/10.2478/picbe-2020-0056
Ntafi, C., Spyrou, S., Bamidis, P., & Theodorou, M. (2022). The legal aspect of interoperability of cross border electronic health services: A study of the european and national legal framework. Health Informatics Journal, 28(3). https://doi.org/10.1177/14604582221128722
Partin, B. (2006). Preventing Medication Errors: An IOM Report. The Nurse Practitioner, 31(12). https://journals.lww.com/tnpj/Fulltext/2006/12000/Preventing_Medication_Errors__An_IOM_Report.2.aspx
Pedro, J., Santos, S. , Vitor De Souza, J., 2, F., Fernandes, L., 3, S., & Rodrigues De Brito, P. H. (2020). Evolução da Inteligência Artificial. Anais Do Congresso Nacional Universidade, EAD e Software Livre, 2(11), 1–6.
Pereira de Lyra Júnior, D., de Souza Siqueira, J., Tenório da Silva, D., Bastos Almeida, L., Barros da Silva, W., Sousa, P., & Pereira Guerreiro, M. (2010). Erro medicamentoso em cuidados de saúde primários e secundários: dimensão, causas e estratégias de prevenção. Revista Portuguesa de Saúde Pública, Tematico(10), 40–46. https://www.elsevier.es/en-revista-revista-portuguesa-saude-publica-323-articulo-erro-medicamentoso-em-cuidados-saude-X0870902510898575?referer=buscador
Prodanov, C., & Freitas, E. (2013). Metodologia do Trabalho Cientifico: Métodos e Técnicas de Pesquisa e do Trabalho Acadêmico. In Feevale (Ed.), Universidade FEEVALE (2nd ed.). Feevale. https://doi.org/10.1017/CBO9781107415324.004
Decreto-Lei n.o 108/2011, 4694 (2011). https://files.dre.pt/1s/2011/11/22100/0496404967.pdf
Rizk, D., Hosny, H., El-Horbaty, E. S., & Salem, A. B. (2020). A study on cloud computing architectures for smart healthcare services. CEUR Workshop Proceedings, 2753, 302–310.
Rodrigues, B., & Andrade, A. (2021). O potencial da inteligência artificial para o desenvolvimento e competitividade das empresas: uma scoping review. Gestão e Desenvolvimento, 29, 381–422.
Rodrigues, S. M., Kanduri, A., Nyamathi, A., Dutt, N., Khargonekar, P., & Rahmani, A. M. (2022). Digital Health-Enabled Community-Centered Care: Scalable Model to Empower Future Community Health Workers Using Human-in-the-Loop Artificial Intelligence. JMIR Formative Research, 6(4), 1–15. https://doi.org/10.2196/29535
Roehrs, A., da Costa, C. A., & da Rosa Righi, R. (2017). OmniPHR: A distributed architecture model to integrate personal health records. Journal of Biomedical Informatics, 71, 70–81. https://doi.org/10.1016/J.JBI.2017.05.012
Ross, S., Bond, C., Rothnie, H., Thomas, S., & MacLeod, M. J. (2009). What is the scale of prescribing errors committed by junior doctors? A systematic review. British Journal of Clinical Pharmacology, 67(6), 629–640. https://doi.org/10.1111/j.1365-2125.2008.03330.x
Sassatelli, E. H. (2022). Cause to Pause: Preventing medication errors with high-risk opioids. Nursing, 52(6), 26–30. https://doi.org/10.1097/01.NURSE.0000829888.93146.5D
Shaban-Nejad, A., Michalowski, M., & Buckeridge, D. L. (2018). Health intelligence: how artificial intelligence transforms population and personalized health. Npj Digital Medicine, 1(53). https://doi.org/10.1038/s41746-018-0058-9
Singh, S., Pankaj, B., Nagarajan, K., P. Singh, N., & Bala, V. (2022). Blockchain with cloud for handling healthcare data: A privacy-friendly platform. Materials Today: Proceedings, 62, 5021–5026. https://doi.org/10.1016/j.matpr.2022.04.910
Sun, J., Ren Id, L., Wang, S., & Yao, X. (2020). A blockchain-based framework for electronic medical records sharing with fine-grained access control. https://doi.org/10.1371/journal.pone.0239946
Tang, P. C., Ash, J. S., Bates, D. W., Overhage, J. M., & Sands, D. Z. (2006). Personal health records: definitions, benefits, and strategies for overcoming barriers to adoption. Journal of the American Medical Informatics Association : JAMIA, 13(2), 121–126. https://doi.org/10.1197/JAMIA.M2025
Tariq, R. A., Vashisht, R., Sinha, A., & Scherbak, Y. (2023). Medication Dispensing Errors And Prevention. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK519065/
Wagner, M. M., & Hogan, W. R. (1996). The accuracy of medication data in an outpatient electronic medical record. Journal of the American Medical Informatics Association, 3(3), 234. https://doi.org/10.1136/JAMIA.1996.96310637
Wartman, S. A., & Combs, C. D. (2019). Reimagining medical education in the age of AI. AMA Journal of Ethics, 21(2), 146–152. https://doi.org/10.1001/AMAJETHICS.2019.146
WHO. (2017). Medication Without Harm. https://www.who.int/initiatives/medication-without-harm
WHO. (2023a). International Classification of Primary Care, 2nd edition (ICPC-2). https://www.who.int/standards/classifications/other-classifications/international-classification-of-primary-care
WHO. (2023b). WHOCC—Structure and principles. https://www.whocc.no/atc/structure_and_principles/
Wu, H., Chan, N. K., Zhang, C. J. P., & Ming, W. K. (2019). The role of the sharing economy and artificial intelligence in health care: Opportunities and challenges. Journal of Medical Internet Research, 21(10), 1–4. https://doi.org/10.2196/13469
Young, R. A., Fulda, K. G., Espinoza, A., Gurses, A. P., Hendrix, Z. N., Kenny, T., & Xiao, Y. (2022). Ambulatory Medication Safety in Primary Care: A Systematic Review. Journal of the American Board of Family Medicine : JABFM, 35(3), 610–628. https://doi.org/10.3122/JABFM.2022.03.210334
Zhang, P., White, J., Schmidt, D. C., Lenz, G., & Rosenbloom, S. T. (2018). FHIRChain: Applying Blockchain to Securely and Scalably Share Clinical Data. Computational and Structural Biotechnology Journal, 16, 267–278. https://doi.org/10.1016/j.csbj.2018.07.004